
Synchronization
CSCI 315 Operating Systems Design

Department of Computer Science

Notice: The slides for this lecture are based on those for Operating Systems Concepts,
10th ed., by Silberschatz, Galvin, and Gagne. Many of the illustrations contained in this
presentation come from this source.

1

A Tale of a Shared Variable

2

code data 
int a = 0;

files

registers

stack

PC

registers

stack

PC

T1 T2

multithreaded process

3

producer consumer

shared buffer 
capacity n items

Race Condition

Races usually occurs because programmers assume that threads
will take some particular trajectory through the execution
space, forgetting the golden rule that threaded
programs must work correctly for any feasible
trajectory.

Computer Systems
A Programmer’s Perspective

Randal Bryant and David O’Hallaron

4

A race occurs when the correctness of a program depends on
one thread reaching point x in its control flow before another
thread reaches point y.

The Synchronization Problem

5

• Concurrent access to shared data may
result in data inconsistency.

• Maintaining data consistency requires
mechanisms to ensure the “orderly”
execution of cooperating processes.

The Critical-Section Problem 
Solution

1. Mutual Exclusion - If process Pi is executing in its critical section,
then no other processes can be executing in their critical sections.

2. Progress - If no process is executing in its critical section and there
exist some processes that wish to enter their critical section, then the
selection of the processes that will enter the critical section next
cannot be postponed indefinitely.

3. Bounded Waiting - A bound must exist on the number of times
that other processes are allowed to enter their critical sections after
a process has made a request to enter its critical section and before
that request is granted. (Assume that each process executes at a
nonzero speed. No assumption concerning relative speed of the N
processes.)

6

Typical Process Pi

do {
entry section
critical section
exit section

remainder section
} while (TRUE);

7

Peterson’s Solution

int turn;

boolean flag[2];

8

do {
flag[i] = TRUE;
turn = j;
while (flag[j] && turn == j);
critical section
flag[i] = FALSE;
remainder section

} while (TRUE);

Using Locks

do {
acquire lock
critical section
release lock
remainder section

} while (TRUE);

9

Atomic

10

1. Mutual Exclusion - If process Pi is
executing in its critical section, then no
other processes can be executing in
their critical sections.

Synchronization Hardware

• Many systems provide hardware support for critical section
code.

• Uniprocessors (could disable interrupts):
– Currently running code would execute without preemption.
– Generally too inefficient on multiprocessor systems.
– Operating systems using this not broadly scalable.

• Modern machines provide special atomic hardware
instructions:
– Test memory word and set value.
– Swap the contents of two memory words.

11

TestAndSet

boolean TestAndSet(boolean *target)

{

 boolean ret_val = *target;

*target = TRUE;

return ret_val;

}

12

Lock with TestAndSet

13

boolean lock = FALSE;

do {
while (TestAndSet(&lock));
critical section
lock = FALSE;
remainder section

} while (TRUE);

CompareAndSwap

int CompareAndSwap (int *value,  
int expected, int new_value){  

 int temp = *value;

 if (*value == expected)  
 *value = new_value;  
 
return temp;

}

14

Lock with CompareAndSwap

15

int lock = 0;

do {
while(CompareAndSwap(&lock,0,1) != 0);
critical section
lock = 0;
remainder section

} while (TRUE);

How are we meeting
requirements?

Do the solutions above provide:

• Mutual exclusion?
• Progress?
• Bounded waiting?

16

Semaphores
• Counting semaphore – integer value can range over an unrestricted

domain.

• Binary semaphore – integer value can range only between 0  
and 1; can be simpler to implement (also known as mutex locks).

• Provides mutual exclusion:

 semaphore S(1); // initialized to 1

 wait(S); // or acquire(S) or P(S)
 criticalSection();
 signal(S); // or release(S) or V(S)

17

Semaphore Implementation

typedef struct {
int value;
struct process
*list;

} semaphore;

18

Semaphore Implementation
wait(semaphore *S) {

S->value--;
if (S->value < 0) {

add process to S->list
block();

}
}

19

signal(semaphore *S) {
S->value++;
if (S->value <= 0) {

remove a process P from S->list
wakeup(P);

}
}

Semaphore Implementation
signal(semaphore *S) {

S->value++;
if (S->value <= 0) {

remove a process P from S->list
wakeup(P);

}
}

wait(semaphore *S) {
S->value--;
if (S->value < 0) {

add process to S->list
block();

}
}

20

Semaphore Implementation

• Must guarantee that no two processes can execute
signal() and wait() on the same semaphore “at the same
time.”

21

• The implementation becomes the critical section
problem:
– Could now have busy waiting in critical section implementation

• But implementation code is short

• Little busy waiting if critical section rarely occupied

– Applications may spend lots of time in critical section

The Bounded-Buffer Problem

int n;

mutex access;

semaphore empty;

semaphore full;

22

init(&access,1);

init(&empty,n);

init(&full,0);

producer consumer

shared buffer 
capacity n items

access

The Bounded-Buffer Problem

23

producer consumer

Producer

do {// produce item and save

wait(&empty);  
wait(&access);  
// add item and save  
signal(&access);  
signal(&full);

} while (true);

do {// produce item and save

wait(&empty);  
wait(&access);  
// add item and save  
signal(&access);  
signal(&full);

} while (true);

The Bounded-Buffer Problem

24

producer consumer

critical section

The Bounded-Buffer Problem

25

producer consumer

Consumer

do { wait(&full);

wait(&access);

// remove item and save

signal(&access);

signal(&empty);

// consume save item

} while (true);

The Bounded-Buffer Problem

do { wait(&full);

wait(&access);

// remove item and save

signal(&access);

signal(&empty);

// consume save item

} while (true);

26

producer consumer

critical section

Deadlock and Starvation

P0 P1

 acquire(S); acquire(Q);
 acquire(Q); acquire(S);

. .

. .

. .
 release(S); release(Q);
 release(Q); release(S);

27

• Deadlock – two or more processes are indefinitely blocked, waiting for an
event that can be caused by only one of the waiting processes.

• Let S and Q be two semaphores initialized to 1

• Starvation – a process is trying to access a resource but its turn never
comes.

The Dining-Philosophers Problem

28

The Dining-Philosophers Problem

29

thinking

hungry

State diagram for a philosopher

eating

The Dining-Philosophers Problem

30

The Dining-Philosophers Problem

31

The Dining-Philosophers Problem

32

The Dining-Philosophers Problem

33

The Dining-Philosophers Problem

34

The Dining-Philosophers Problem

35

Limit to Concurrency

What is the maximum number of
philosophers that can be eating at any
point in time?

36

Philosopher’s Behavior

• Grab chopstick on left
• Grab chopstick on right
• Eat
• Put down chopstick on right
• Put down chopstick on left

37

How well does this work?

The Dining-Philosophers Problem

38

The Dining-Philosophers Problem

39

Question: How many philosophers can eat at once? How
can we generalize this answer for n philosophers and n
chopsticks?

Question: What happens if the programmer initializes the
semaphores incorrectly? (Say, two semaphores start out a
zero instead of one.)

Question: How can we formulate a solution to the
problem so that there is no deadlock or starvation?

Synonyms

40

wait signal

P V

acquire release

down up

lock unlock

The Sleeping Barber Problem

41

The Sleeping Barber Problem

42

The Sleeping Barber Problem

43

The Sleeping Barber Problem

44

The Sleeping Barber Problem

45

The Sleeping Barber Problem

46

The Sleeping Barber Problem

47

The Sleeping Barber Problem

48

The Sleeping Barber Problem

49

Solution
#define CHAIRS 5

semaphore customers = 0;

semaphore barbers = 0;

mutex access = 1;

int waiting = 0;

50

void barber(void)

{

 while (TRUE) {

 wait(&customers);

 wait(&access);

 waiting = waiting - 1;

 signal(&barbers);

 signal(&access);

 cut_hair();

 }

}

Solution
#define CHAIRS 5

semaphore customers = 0;

semaphore barbers = 0;

mutex access = 1;

int waiting = 0;

51

void customer(void)

{

 down(&access);

 if (waiting < CHAIRS) {

 waiting = waiting + 1;

 signal(&customers);

 signal(&access);

 wait(&barbers);

 get_haircut();

 } else {

 signal(&access);

 }

}

Solution

52

void customer(void)

{

 wait(&access);

 if (waiting < CHAIRS) {

 waiting = waiting + 1;

 signal(&customers);

 signal(&access);

 wait(&barbers);

 get_haircut();

 } else {

 signal(&access);

 }

}

void barber(void)

{

 while (TRUE) {

 wait(&customers);

 wait(&access);

 waiting = waiting - 1;

 signal(&barbers);

 signal(&access);

 cut_hair();

 }

}

The Sleeping Barber Problem

53

What entities are we modeling?

What behaviors are we modeling?
(How do we synchronize behaviors?)

What are the shared structures?

The Sleeping Barber Problem

54

What entities are we modeling?

• Customers
• Barber
• Barber chair
• Waiting area

The Sleeping Barber Problem

55

What entities are we modeling?

Customer process

Barber process

Barber Chair data

Waiting Area data

Entity Representation

The Sleeping Barber Problem

56

What behaviors are we modeling?
(How do we synchronize behaviors?)

sleeping cutting
hair

customer arrives

no customer

waiting
customers

Monitor
• Semaphores are low-level synchronization resources.

• A programmer’s honest mistake can compromise the entire system (well, that is
almost always true). We should want a solution that reduces risk.

• The solution can take the shape of high-level language constructs, as the monitor
type:

57

A function can access only local variables
defined within the monitor.

There cannot be concurrent access to
procedures within the monitor (only one
process/thread can be active in the
monitor at any given time).

Condition variables: queues are
associated with variables. Primitives for
synchronization are wait and signal.

monitor mName {
 // shared variables
declaration
 function P1 (…) {
 …
 }
 function Pn (…) {
 …
 }
 init code (…) {
 ….
 }
}

Monitor

58

• The monitor is a “high level of abstraction”
construct.

• Placing shared data in a monitor guarantees
mutually exclusive access to that data.

• Access to the data inside the monitor happens
exclusively through the monitor’s procedures.

Benefit
The programmer is
protected from mistakes
in coding solutions to the
critical section problem.

Restriction
The monitor doesn’t

directly solve all
synchronization problems.
For that, the programmer

needs to use condition
variables.

Monitor

59

Condition Variables

60

• Two operations are allowed on a condition variable:
➡ x.wait() – a process that invokes the operation is

suspended until x.signal()

➡ x.signal() – resumes one of processes (if any) that

invoked x.wait()

• If no x.wait() on the variable, then it has no effect on

the variable

condition x, y;

Monitor

61

Practical Applications of 
 Classical Problems

62

Producers and Consumers

Message Queues

Producers = Services publishing messages
Consumers = Services subscribing to them
Shared buffer = Middleware (Kafka,
RabbitMQ, ZeroMQ, etc.)

This is the heart of modern cloud
architectures. Producers and consumers
are decoupled, can scale independently, and
synchronize through message queues.

Data Acquisition in IoT / Sensor Systems

Producers = Sensor sampling threads
Consumers = Data analysis/storage threads
Shared buffer = Memory queue

Sensors may generate data at different rates than
analysis/storage threads can process. The buffer
smooths mismatches.

Practical Applications of 
 Classical Problems

63

The Sleeping Barber
Job Scheduling in an OS

Barber = CPU core (or processor)
Chairs = Ready queue
Customers = Processes needing CPU time

When a process is ready:
If the CPU is idle, it runs immediately.
If the CPU is busy, it waits in the ready
queue.
If the ready queue is full (in embedded
systems, real-time systems, or hardware
schedulers), new jobs are blocked or
discarded.

Thread Pool in a Web Server

Barber = Worker thread
Chairs = Task queue slots
Customers = Incoming client requests

When HTTP requests come in:
If a thread is free, it processes the request immediately.
If all threads are busy, the request waits in a bounded
queue. If the queue is full, requests may be dropped or
asked to retry. This is almost a direct implementation of
the barber problem solution.

When a process is ready:
If the CPU is idle, it runs immediately. If the CPU is busy,
it waits in the ready queue. If the ready queue is full (in
embedded systems, real-time systems, or hardware
schedulers), new jobs are blocked or discarded.

Practical Applications of 
 Classical Problems

64

