
Synchronization
CSCI 315 Operating Systems Design

Department of Computer Science

Notice: The slides for this lecture are based on those for Operating Systems Concepts, 
10th ed., by Silberschatz, Galvin, and Gagne.  Many of the illustrations contained in this 
presentation come from this source.

1



A Tale of a Shared Variable
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Race Condition

Races usually occurs because programmers assume that threads 
will take some particular trajectory through the execution 
space, forgetting the golden rule that threaded 
programs must work correctly for any feasible 
trajectory.

Computer Systems
A Programmer’s Perspective

Randal Bryant and David O’Hallaron
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A race occurs when the correctness of a program depends on 
one thread reaching point x in its control flow before another 
thread reaches point y. 



The Synchronization Problem
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• Concurrent access to shared data may 
result in data inconsistency.

• Maintaining data consistency requires 
mechanisms to ensure the “orderly” 
execution of cooperating processes.



The Critical-Section Problem 
Solution

1. Mutual Exclusion - If process Pi is executing in its critical section, 
then no other processes can be executing in their critical sections.

2. Progress - If no process is executing in its critical section and there 
exist some processes that wish to enter their critical section, then the 
selection of the processes that will enter the critical section next 
cannot be postponed indefinitely.

3. Bounded Waiting -  A bound must exist on the number of times 
that other processes are allowed to enter their critical sections after 
a process has made a request to enter its critical section and before 
that request is granted. (Assume that each process executes at a 
nonzero speed. No assumption concerning relative speed of the N 
processes.)
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Typical Process Pi

do {
entry section
critical section
exit section

remainder section
} while (TRUE);
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Peterson’s Solution

int turn;

boolean flag[2];
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do {
flag[i] = TRUE;
turn = j;
while (flag[j] && turn == j);
critical section
flag[i] = FALSE;
remainder section

} while (TRUE);



Using Locks

do {
acquire lock
critical section
release lock
remainder section

} while (TRUE);
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Atomic
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1. Mutual Exclusion - If process Pi is 
executing in its critical section, then no 
other processes can be executing in 
their critical sections.



Synchronization Hardware

• Many systems provide hardware support for critical section 
code.

• Uniprocessors (could disable interrupts):
– Currently running code would execute without preemption.
– Generally too inefficient on multiprocessor systems.
– Operating systems using this not broadly scalable.

• Modern machines provide special atomic hardware 
instructions:
– Test memory word and set value.
– Swap the contents of two memory words.
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TestAndSet

boolean TestAndSet(boolean *target)

{

    boolean ret_val = *target;

*target = TRUE;

return ret_val;

}

12



Lock with TestAndSet
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boolean lock = FALSE;

do {
while (TestAndSet(&lock));
critical section
lock = FALSE;
remainder section

} while (TRUE);



CompareAndSwap

int CompareAndSwap (int *value,  
int expected, int new_value){  

  int temp = *value;

  if (*value == expected)  
  *value = new_value;  
 
return temp;

}
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Lock with CompareAndSwap
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int lock = 0;

do {
while(CompareAndSwap(&lock,0,1) != 0);
critical section
lock = 0;
remainder section

} while (TRUE);



How are we meeting 
requirements?

Do the solutions above provide:

• Mutual exclusion?
• Progress?
• Bounded waiting?
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Semaphores
• Counting semaphore – integer value can range over an unrestricted 

domain.

• Binary semaphore – integer value can range only between 0  
and 1; can be simpler to implement (also known as mutex locks).

• Provides mutual exclusion:

                              semaphore S(1); // initialized to 1

                            wait(S); // or acquire(S) or P(S)
                            criticalSection();
                            signal(S); // or release(S) or V(S)
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Semaphore Implementation

typedef struct {
int value;
struct process 
*list;

} semaphore;
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Semaphore Implementation
wait(semaphore *S) { 

S->value--;
if (S->value < 0) { 

add process to S->list
block();

}
}
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signal(semaphore *S) { 
S->value++;
if (S->value <= 0) { 

remove a process P from S->list
wakeup(P);

}
}



Semaphore Implementation
signal(semaphore *S) { 

S->value++;
if (S->value <= 0) { 

remove a process P from S->list
wakeup(P);

}
}

wait(semaphore *S) { 
S->value--;
if (S->value < 0) { 

add process to S->list
block();

}
}
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Semaphore Implementation

• Must guarantee that no two processes can execute 
signal() and wait() on the same semaphore “at the same 
time.”
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• The implementation becomes the critical section 
problem:
– Could now have busy waiting in critical section implementation

• But implementation code is short

• Little busy waiting if critical section rarely occupied

– Applications may spend lots of time in critical section



The Bounded-Buffer Problem

int n;

mutex access;

semaphore empty;

semaphore full;
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init(&access,1);

init(&empty,n);

init(&full,0);

producer consumer

shared buffer 
capacity n items

access



The Bounded-Buffer Problem
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producer consumer

Producer

do {// produce item and save

wait(&empty);  
wait(&access);  
// add item and save  
signal(&access);  
signal(&full);

} while (true);



do {// produce item and save

wait(&empty);  
wait(&access);  
// add item and save  
signal(&access);  
signal(&full);

} while (true);

The Bounded-Buffer Problem
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producer consumer

critical section



The Bounded-Buffer Problem
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producer consumer

Consumer

do {  wait(&full);

wait(&access);

// remove item and save

signal(&access);

signal(&empty);

// consume save item

} while (true);



The Bounded-Buffer Problem

do {  wait(&full);

wait(&access);

// remove item and save

signal(&access);

signal(&empty);

// consume save item

} while (true);
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producer consumer

critical section



Deadlock and Starvation

P0 P1

             acquire(S); acquire(Q);
              acquire(Q); acquire(S);

. .

. .

. .
              release(S); release(Q);
              release(Q); release(S);

27

• Deadlock – two or more processes are indefinitely blocked, waiting for an 
event that can be caused by only one of the waiting processes.

• Let S and Q be two semaphores initialized to 1 

• Starvation  – a process is trying to access a resource but its turn never 
comes. 



The Dining-Philosophers Problem
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The Dining-Philosophers Problem
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The Dining-Philosophers Problem
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The Dining-Philosophers Problem
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The Dining-Philosophers Problem
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The Dining-Philosophers Problem
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The Dining-Philosophers Problem
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The Dining-Philosophers Problem
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Limit to Concurrency

What is the maximum number of 
philosophers that can be eating at any 
point in time? 
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Philosopher’s Behavior

• Grab chopstick on left
• Grab chopstick on right
• Eat
• Put down chopstick on right
• Put down chopstick on left
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How well does this work?



The Dining-Philosophers Problem
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The Dining-Philosophers Problem
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Question: How many philosophers can eat at once? How 
can we generalize this answer for n philosophers and n 
chopsticks?

Question: What happens if the programmer initializes the 
semaphores incorrectly? (Say, two semaphores start out a 
zero instead of one.)

Question: How can we formulate a solution to the 
problem so that there is no deadlock or starvation?



Synonyms
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wait signal

P V

acquire release

down up

lock unlock



The Sleeping Barber Problem
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The Sleeping Barber Problem
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The Sleeping Barber Problem
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The Sleeping Barber Problem
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The Sleeping Barber Problem
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The Sleeping Barber Problem
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The Sleeping Barber Problem
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The Sleeping Barber Problem
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The Sleeping Barber Problem
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Solution
#define CHAIRS 5

semaphore customers = 0;

semaphore barbers = 0;

mutex access = 1;

int waiting = 0;
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void barber(void)

{

    while (TRUE) {

        wait(&customers);

        wait(&access);

        waiting = waiting - 1;

        signal(&barbers);

        signal(&access);

        cut_hair();

    } 

}



Solution
#define CHAIRS 5

semaphore customers = 0;

semaphore barbers = 0;

mutex access = 1;

int waiting = 0;
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void customer(void)

{ 

   down(&access);

   if (waiting < CHAIRS) {

     waiting = waiting + 1;

     signal(&customers);

     signal(&access);

     wait(&barbers);

     get_haircut();

   } else {

        signal(&access);

   } 

}



Solution
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void customer(void)

{ 

   wait(&access);

   if (waiting < CHAIRS) {

     waiting = waiting + 1;

     signal(&customers);

     signal(&access);

     wait(&barbers);

     get_haircut();

   } else {

        signal(&access);

   } 

}

void barber(void)

{

    while (TRUE) {

        wait(&customers);

        wait(&access);

        waiting = waiting - 1;

        signal(&barbers);

        signal(&access);

        cut_hair();

    } 

}



The Sleeping Barber Problem
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What entities are we modeling?

What behaviors are we modeling? 
(How do we synchronize behaviors?)

What are the shared structures?



The Sleeping Barber Problem
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What entities are we modeling?

• Customers
• Barber
• Barber chair
• Waiting area



The Sleeping Barber Problem
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What entities are we modeling?

Customer process

Barber process

Barber Chair data

Waiting Area data

Entity Representation



The Sleeping Barber Problem
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What behaviors are we modeling? 
(How do we synchronize behaviors?)

sleeping cutting 
hair

customer arrives

no customer

waiting 
customers



Monitor
• Semaphores are low-level synchronization resources.

• A programmer’s honest mistake can compromise the entire system (well, that is 
almost always true). We should want a solution that reduces risk.

• The solution can take the shape of high-level language constructs, as the monitor 
type:
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A function can access only local variables 
defined within the monitor.

There cannot be concurrent access to 
procedures within the monitor (only one 
process/thread can be active in the 
monitor at any given time). 

Condition variables: queues are 
associated with variables. Primitives for 
synchronization are wait and signal.

monitor mName {
  // shared variables 
declaration
  function  P1 (…) {
     …
  }
  function Pn (…) {
     …
  }
  init code (…) {
    ….
  }
}



Monitor
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• The monitor is a “high level of abstraction” 
construct.

• Placing shared data in a monitor guarantees 
mutually exclusive access to that data.

• Access to the data inside the monitor happens 
exclusively through the monitor’s procedures. 

Benefit
The programmer is 
protected from mistakes 
in coding solutions to the 
critical section problem. 

Restriction
The monitor doesn’t 

directly solve all 
synchronization problems. 
For that, the programmer 

needs to use condition 
variables.



Monitor

59



Condition Variables
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• Two operations are allowed on a condition variable:
➡ x.wait() –  a process that invokes the operation is 

suspended until x.signal() 

➡ x.signal() – resumes one of processes (if any) that  

invoked x.wait()

• If no x.wait() on the variable, then it has no effect on 

the variable

condition x, y;



Monitor
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Practical Applications of 
 Classical Problems
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Producers and Consumers

Message Queues

Producers = Services publishing messages
Consumers = Services subscribing to them
Shared buffer = Middleware (Kafka, 
RabbitMQ, ZeroMQ, etc.)

This is the heart of modern cloud 
architectures. Producers and consumers 
are decoupled, can scale independently, and 
synchronize through message queues.

Data Acquisition in IoT / Sensor Systems

Producers = Sensor sampling threads
Consumers = Data analysis/storage threads
Shared buffer = Memory queue

Sensors may generate data at different rates than 
analysis/storage threads can process. The buffer 
smooths mismatches.



Practical Applications of 
 Classical Problems
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The Sleeping Barber
Job Scheduling in an OS

Barber = CPU core (or processor)
Chairs = Ready queue
Customers = Processes needing CPU time

When a process is ready:
If the CPU is idle, it runs immediately.
If the CPU is busy, it waits in the ready 
queue.
If the ready queue is full (in embedded 
systems, real-time systems, or hardware 
schedulers), new jobs are blocked or 
discarded.

Thread Pool in a Web Server

Barber = Worker thread
Chairs = Task queue slots
Customers = Incoming client requests

When HTTP requests come in:
If a thread is free, it processes the request immediately. 
If all threads are busy, the request waits in a bounded 
queue. If the queue is full, requests may be dropped or 
asked to retry. This is almost a direct implementation of 
the barber problem solution.

When a process is ready:
If the CPU is idle, it runs immediately. If the CPU is busy, 
it waits in the ready queue. If the ready queue is full (in 
embedded systems, real-time systems, or hardware 
schedulers), new jobs are blocked or discarded.



Practical Applications of 
 Classical Problems
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