Bucknell

UNIVERSITY

Synchronization

CSCIl 315 Operating Systems Design
Department of Computer Science

Notice: The slides for this lecture are based on those for Operating Systems Concepts,
| 0th ed., by Silberschatz, Galvin, and Gagne. Many of the illustrations contained in this
presentation come from this source.




A Tale of a Shared Variable

code data files
inta = 0;

registers

stack

multithreaded process



producer >

shared buffer

capacity n items



Race Condition

A race occurs when the correctness of a program depends on
one thread reaching point X in its control flow before another
thread reaches point y.

Races usually occurs because programmers assume that threads
will take some particular trajectory through the execution
space, forgetting the golden rule that threaded
programs must work correctly for any feasible
trajectory.

Computer Systems
A Programmer’s Perspective

Randal Bryant and David O’Hallaron



The Synchronization Problem

 Concurrent access to shared data may
result in data inconsistency.

* Maintaining data consistency requires
mechanisms to ensure the “orderly”
execution of cooperating processes.



The Ciritical-Section Problem
Solution

Mutual Exclusion - If process P, is executing in its critical section,
then no other processes can be executing in their critical sections.

Progress - If no process is executing in its critical section and there
exist some processes that wish to enter their critical section, then the
selection otPthe processes that will enter the critical section next
cannot be postponed indefinitely.

Bounded Waiting - A bound must exist on the number of times
that other processes are allowed to enter their critical sections after
a process has made a request to enter its critical section and before
that request is granted. (Assume that each process executes at a
nonzero speed. No assumption concerning relative speed of the N
processes.)




Typical Process P,

do {
entry section
critical section
exit section
remalnder section
} while (TRUE);



Peterson’s Solution

do {
flag[i] = TRUE;

int turn;

boolean flag[2];

turn = j;
while (flag[j] && turn ==

critical section

flag[i] = FALSE;

remalnder section
} while (TRUE);

J)



Using Locks

do {
acquire lock
critical section
release lock
remainder section
} while (TRUE);



Atomic

) A V o .
BELIEVE YOURE || 1

WIELDING —

1. Mutual Exclusion - If process P; is
executing in its critical section, then no
other processes can be executing in
their critical sections.

10



Synchronization Hardware

Many systems provide hardware support for critical section
code.

Uniprocessors (could disable interrupts):
— Currently running code would execute without preemption.
— Generally too inefficient on multiprocessor systems.
— Operating systems using this not broadly scalable.

Modern machines provide special atomic hardware
instructions:

— Test memory word and set value.
— Swap the contents of two memory words.

11



TestAndSet

boolean TestAndSet(boolean *target)
{

boolean ret val = *target;
*target = TRUE;

return ret val;

12



Lock with TestAndSet

boolean lock = FALSE;

do {
while (TestAndSet (&lock));
critical section
lock = FALSE;
remainder section
} while (TRUE);

13



CompareAndSwap

int CompareAndSwap (int *value,
int expected, int new value){

int temp = *value;
1f (*value == expected)
*value = new value;

return temp;

14



Lock with CompareAndSwap

int lock = 0;

do {

while (CompareAndSwap(&lock,0,1) != 0);
critical section

lock = 0;
remainder section
} while (TRUE);

15



How are we meeting
requirements!

Do the solutions above provide:
e Mutual exclusion!?

* Progress?
* Bounded waiting!?

16



Semaphores

Counting semaphore — integer value can range over an unrestricted
domain.

Binary semaphore — integer value can range only between 0
and |; can be simpler to implement (also known as mutex locks).
Provides mutual exclusion:

semaphore S(1); // initialized to |

wait(S); // or acquire(S) or P(S)
criticalSection();
signal(S); // or release(S) or V(S)

17



Semaphore Implementation

typedef struct {
int value;
struct process
*list;

} semaphore;

18



Semaphore Implementation

kwait(semaphore *S) {

S->value--;

if (S->value < 0) {

add process to S->1list
=

block(); — —
signal (semaphore *S) {

m |
| ' ' S->value+t++;
} if (S->value <= 0) {

remove a process P from S->list

wakeup (P);

|

19



Semaphore Implementation

| signal (semaphore *S) {

ﬁ S->value++;
1if (S->value <= 0) {
remove a process P from S->list

wakeup(P); —— —

} | wait (semaphore *S) {
\
} , S->value--;
I — J if (S->value < 0) {

add process to S->1list
block();




Semaphore Implementation

* Must guarantee that no two processes can execute
signal() and wait() on the same semaphore “at the same
time.’

* The implementation becomes the critical section
problem:

— Could now have busy waiting in critical section implementation
* But implementation code is short
* Little busy waiting if critical section rarely occupied
— Applications may spend lots of time in critical section
21



The Bounded-Buffer Problem

int n;
mutex access; init(&access,l);
semaphore empty; init(&empty,n);
semaphore full; init(&full,0);
access
/
producer > >

shared buffer

capacity n items

22



The Bounded-Buffer Problem

do {// produce item and save

walt (&empty);

walit (&access);

// add item and save
signal (&access);
signal (&full);

Producer

} while (true);

producer > >

23



The Bounded-Buffer Problem

do {// produce item and save

walt (&empty);
walit (&access);
// add item and save Critical section
signal (&access);
signal (&full);

} while (true);

producer > >

24



The Bounded-Buffer Problem

do { wait(&full);
walit (&access);
// remove item and save
Consu,mer" signal (&access);
signal (&empty) ;
// consume save item

} while (true);

/

producer > >

\

25



The Bounded-Buffer Problem

do { wait(&full);

walt (&access);

Critical Section // remove item and save

signal (&access);

signal (&empty) ;
// consume save item

} while (true);

4 )

producer > >

26



Deadlock and Starvation

* Deadlock — two or more processes are indefinitely blocked, waiting for an
event that can be caused by only one of the waiting processes.

* Let S and Q be two semaphores initialized to |

P, P,
acquire(S); acquire(Q);
acquire(Q); acquire(S);
release(S); release(Q);
release(Q); release(S);

¢ Starvation —a process is trying to access a resource but its turn never
comes.

27



The Dining-Philosophers Problem

%

28



The Dining-Philosophers Problem

hungry

State diagram for a philosopher

e

59

29




The Dining-Philosophers Problem

WNORW

© ©
C @
OJRNO



The Dining-Philosophers Problem

WNORW

© ©
C @
OJRNO



The Dining-Philosophers Problem

_NORW

© ©
C @
OJRNO



The Dining-Philosophers Problem

_NORW

O ©
C @
OJRNO

33



The Dining-Philosophers Problem

_NORW

© ©
C @
OJRNO



The Dining-Philosophers Problem

WNORW

© ©
C @
OJRNO



Limit to Concurrency

What is the maximum number of
philosophers that can be eating at any
point in time!

36




Philosopher’s Behavior

* Grab chopstick on left

* Grab chopstick on right

* Eat

* Put down chopstick on right
* Put down chopstick on left

How well does this work!?

37



The Dining-Philosophers Problem

CO

38



The Dining-Philosophers Problem

Question: How many philosophers can eat at once! How

can we generalize this answer for n philosophers and n
chopsticks?

Question: What happens if the programmer initializes the
semaphores incorrectly? (Say, two semaphores start out a
zero instead of one.)

Question: How can we formulate a solution to the
problem so that there is no deadlock or starvation?

39



Synonyms

wait signal
P A"

acquire release
down up

lock unlock

40




The Sleeping Barber Problem

41



The Sleeping Barber Problem

42



The Sleeping Barber Problem

43



The Sleeping Barber Problem

44



The Sleeping Barber Problem

45



The Sleeping Barber Problem

46



The Sleeping Barber Problem

47



The Sleeping Barber Problem

48



The Sleeping Barber Problem

49



Solution

#define CHAIRS 5
semaphore customers = 0;
semaphore barbers = 0;
mutex access = 1;

int waiting = 0;

I

ivoid barber (void)

| 4

while (TRUE) {
wait (&customers);

wait (&access);

signal (&barbers);

signal (&access);

cut hair();

waiting = waiting - 1;

50



Solution

#define CHAIRS 5 ”void customer (void) |
semaphore customers = 0; h{ .
semaphore barbers = 0; | down (&access) ;

mutex access = 1; if (waiting < CHAIRS) {

int waiting = 0; waiting = waiting + 1;

signal (&customers) ;
| signal (&access);
wait (&barbers);
get haircut();
} else {

signal (&access);




1‘1

|

Solution

Lvoid barber (void) Jvoid customer (void) f
{ { h;
while (TRUE) { I wait (&access); |
walt (&customers) ; ; if (waiting < CHAIRS) {
wait (&access); * waiting = waiting + 1;
waiting = waiting - 1; N signal (&customers);
signal (&barbers); | signal (&access);
signal (&access); | wait (&barbers);
cut_hair(); | get haircut();
} } else {
} | signal (&access);




The Sleeping Barber Problem

What entities are we modeling?

What behaviors are we modeling?
(How do we synchronize behaviors?)

What are the shared structures?

53



The Sleeping Barber Problem

What entities are we modeling?

e Customers
e Barber

e Barber chair
* Waiting area

54



The Sleeping Barber Problem

What entities are we modeling?

Entity Representation
Customer process
Barber process
Barber Chair data
Waiting Area data

95



The Sleeping Barber Problem

What behaviors are we modeling?
(How do we synchronize behaviors?)

customer arrives

waiting
sleeping customers

Nno customer

56



Monitor

Semaphores are low-level synchronization resources.

A programmer’s honest mistake can compromise the entire system (well, that is
almost always true).We should want a solution that reduces risk.

The solution can take the shape of high-level language constructs, as the monitor
type:
A function can access only local variables

monitor mName { defined within the monitor.

// shared variables

declaration

function Pl (..) { There cannot be concurrent access to
procedures within the monitor (only one
} process/thread can be active in the
function Pn (..) { monitor at any given time).
} Condition variables: queues are
init code (..) { associated with variables. Primitives for
. synchronization are wait and signal.

}

}

o7



Monitor

* The monitor is a “‘high level of abstraction”

construct.
* Placing shared data in a monitor guarantees

mutually exclusive access to that data.
* Access to the data inside the monitor happens
exclusively through the monitor’s procedures.

Benefit Restriction
The monitor doesn’t

directly solve all
synchronization problems.
For that, the programmer
needs to use condition
variables.

The programmer is
protected from mistakes
in coding solutions to the
critical section problem.

58



Monitor

entry queue

shared data

queues associated with
X, y conditions

~

operations

initialization
code

59



Condition Variables

condition x, y;

e Two operations are allowed on a condition variable:

=) x.wait () — a process that invokes the operation is
suspended until x.signal()

=) x.signal () —resumes one of processes (if any) that
invoked x.wait()
- Ifnox.wait () on the variable, then it has no effect on
the variable

60



Monitor

entry queue

shared data

v

operations

initialization
code

61



Practical Applications of
Classical Problems

Producers and Consumers

Message Queues Data Acquisition in loT / Sensor Systems
Producers = Services publishing messages Producers = Sensor sampling threads

Consumers = Services subscribing to them Consumers = Data analysis/storage threads

Shared buffer = Middleware (Kafka, Shared buffer = Memory queue

RabbitMQ, ZeroMQ, etc.)

Sensors may generate data at different rates than

This is the heart of modern cloud analysis/storage threads can process.The buffer
architectures. Producers and consumers smooths mismatches.

are decoupled, can scale independently, and
synchronize through message queues.

62



Practical Applications of
Classical Problems

The Sleeping Barber

Job Scheduling in an OS

Barber = CPU core (or processor)
Chairs = Ready queue
Customers = Processes needing CPU time

When a process is ready:

If the CPU is idle, it runs immediately.

If the CPU is busy, it waits in the ready
queue.

If the ready queue is full (in embedded
systems, real-time systems, or hardware
schedulers), new jobs are blocked or
discarded.

Thread Pool in a Web Server

Barber =Worker thread
Chairs = Task queue slots
Customers = Incoming client requests

When HTTP requests come in:

If a thread is free, it processes the request immediately.
If all threads are busy, the request waits in a bounded
queue. If the queue is full, requests may be dropped or
asked to retry.This is almost a direct implementation of
the barber problem solution.

When a process is ready:

If the CPU is idle, it runs immediately. If the CPU is busy,
it waits in the ready queue. If the ready queue is full (in
embedded systems, real-time systems, or hardware
schedulers), new jobs are blocked or discarded.

63



Practical Applications of
Classical Problems

64



