Bucknell

UNIVERSITY

Processes and More

CSCIl 315 Operating Systems Design
Department of Computer Science

Notice: The slides for this lecture have been largely based on those accompanying the
textbook Operating Systems Concepts, |10th ed., by Silberschatz, Galvin, and Gagne. Many,
if not all, the illustrations contained in this presentation come from this source.

Abstractions and Layers

" layerN >~
user interface

|

f /
{
/[layer0
(\ hardware
\

OS Services

user and other system programs

GUI

batch command line

user interfaces

system calls
program I/O file T resource ;
execution operations systems comimgnication allocation degounting
error pro;?](glon
detection . security
services

operating system

hardware

Unix Structure

(the users)

shells and commands
compilers and interpreters
system libraries

system-call interface to the kernel

= signals terminal file system CPU scheduling

= handling swapping block /O page replacement

N character /O system system demand paging
terminal drivers disk and tape drivers virtual memory

kernel interface to the hardware

terminal controllers device controllers memory controllers
terminals disks and tapes physical memory

OS Operations

Interrupt driven by hardware

Software error or request creates exception or trap

* Division by zero, request for operating system service

Other process problems include infinite loop, processes modifying each other
or the operating system

Dual-mode operation allows OS to protect itself and other system
components

e User mode and kernel mode
* Mode bit provided by hardware

* Provides ability to distinguish when system is running user code or kernel
code

* Some instructions designated as privileged, only executable in kernel
mode

* System call changes mode to kernel, return from call resets it to user
* Increasingly CPUs support multi-mode operations

* i.e.virtual machine manager (VMM) mode for guest VMs

User and Kernel Modes

user process
user mode
user process executing —» calls system call return from system call (mode bit = 1)
\ 7
A 7
* 7
kernel trap return
ol mode bit =0 mode bit = 1
kernel mode
execute system call (mode bit = 0)

Hardware Support for the OS

e Two classes of instructions: one class for anyone to use,

others with privileged use (for the OS kernel).

® Need to be able to switch between user mode and kernel

mode.

® [f a user runs a privileged instruction, an exception is raised.

® TJo switch to kernel mode, you need to trap to the kernel.

user process

user mode
user process executing —» calls system call return from system call e tle R
\ 7
L1 Vi
3 7
K I trap return
sl mode bit = 0 mode bit = 1
kernel mode
(mode bit = 0)

execute system call

System Calls and the OS

user application

open ()
user
mode
system call interface
kernel
mode A
| open ()
Implementation
i » of open ()

system call

return

System Calls and Libraries

#include <stdio.h>
int main ()

{

printf (“Greetings”); |

2
return 0;

}

user v
mode
standard C library —
kernel
mode
write ()
2

write ()
system call

strace

1. perrone@linuxremotel:~ (ssh)

STRACE(1) STRACE(1)

strace - trace system calls and signals

] [-ocolumn] [-eexpr] ... [-ofile] [
pid] ... [-sstrsize] [-uusername] [-Evar=val] ... [-Evar]

[command [arg ... 1]

[J[-eexpr] ... [-Ooverhead] [-Ssortby] [command
[arg ... 1]

In the simplest case runs the specified command until it exits.
It 1intercepts and records the system calls which are called by a pro-
cess and the signals which are]received by a process. The name of each
system call, its arguments and its return value are printed on standard
error or to the file specified with the option.

is a useful diagnostic, instructional, and debugging tool. Sys-
tem administrators, diagnosticians and trouble-shooters will find it
invaluable for solving problems with programs for which the source is
not readily available since they do not need to be recompiled in order

Process Concept

* Process —a program in
execution; the code in a
process executes
sequentially. (Ahem,
mostly. To be discussed
later.)

* A process includes:

— program counter, program counter

stack

heap

data

— stack,

— data section.

code

Creating processes in Unix

(Always RTFMP)

perrone@linuxremotel:~ (ssh)

FORK(2) Linux Programmer's Manual FORK(2)

NAME
fork - create a child process

SYNOPSIS
#include <unistd.h>

pid_t fork(void);

DESCRIPTION

fork() creates a new process by duplicating the calling process. The new process, referred to as the child, is an exact
duplicate of the calling process, referred to as the parent, except for the following points:

* The child has its own unique process ID, and this PID does not match the ID of any existing process group
(setpgid(2)).

* The child's parent process ID is the same as the parent's process ID.

* The child does not inherit its parent's memory locks (mlock(2), mlockall(2)).

Process resource utilizations (getrusage(2)) and CPU time counters (times(2)) are reset to zero in the child.
* The child's set of pending signals is initially empty (sigpending(2)).

Manual page fork(2) line 1 (press h for help or q to quit)

Forking
(yeah, it’s a thing, a Unix thing)

|

»fork();

|

Forking
(yeah, it’s a thing, a Unix thing)

Forking
(what that return value is for)

parent

Forking

(what that return value is for)

parent

what’s the value of pid!

Using fork safely
int pid;

pid = fork();
if (0 != pid) {
// code of the parent

} else {
// code of the child

Using fork safely
int pid;

pid = fork();
if (0 != pid) {
// code of the parent

} else {
// code of the child

Using fork safely

int pid;

pid = fork();
if (0 != pid) {
// code of parent P

} else {
// code of child C

Using fork safely

int pidl, pid2;
pidl = fork();
if (0 != pidl) {
// code of parent P

} else {
// code of child C1
pid2 = fork();
if (0 != pid2) {

N

// code of child C1l, parent of C2

} else {
// code of child C2

Using fork even more safely

int pid;
pid = fork();
if (-1 == pid) {

// error handling

} else if (0 != pid) {
// code of parent P

} else {
// code of child C

Using fork even more safely

int pid;
pid = Fork();
if (0 != pid) {
// code of parent P

} else {
// code of child C

Joining processes in

(Always RTFMP)

WAIT(2) Linux Programmer's Manual WAIT(2)

NAME
wait, waitpid, waitid - wait for process to change state

SYNOPSIS
#include <sys/types.h>
#include <sys/wait.h>

pid_t wait(int *status);

pid_t waitpid(pid_t pid, int *status, int options);

int waitid(idtype_t idtype, id_t id, siginfo_t *infop, int options);
Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

waitidQ:
_SVID_SOURCE |1 _XOPEN_SOURCE >= 500 || _XOPEN_SOURCE && _XOPEN_SOURCE_EXTENDED
Il /* Since glibc 2.12: */ _POSIX_C_SOURCE >= 2008@9L

DESCRIPTION
All of these system calls are used to wait for state changes in a child of the calling process, and obtain information
about the child whose state has changed. A state change is considered to be: the child terminated; the child was stopped
by a signal; or the child was resumed by a signal. In the case of a terminated child, performing a wait allows the sys-

Manual page wait(2) line 1 (press h for help or q to quit)]

Waiting

(the inverse of forking)

parent

child

parent
blocks

Waiting

(the inverse of forking)
parent

int s;

l child

» walt(&s);

int s;

exit (0);

Waiting

(the inverse of forking)
parent

int s;

l child

» walt(&s);
parent
blocks |

int s;

exiE(O);
<

Waiting

(the inverse of forking)

parent

parent
unblocks

fork(2) and exec(3)

How do you run a process
that has code (text) which is
not identical to its parent’s?

Linux Process Control

*ps(1l)

e top(1l) (MacOS X: make your terminal wide)
e htop(1)

e pstree(l)

e kill (1)

kill(1l)

$ kill -9 12764

Terminates the process with pid
12764

$ kill -9 -1

Terminates all processes run by you,
including your current shell.

killall(1)

$ killall -9 prog

Terminates all processes running the
pbrogram named prog

A Process Tree in Linux

systemd
pid =1

logind sshd
pid = 8415 pid = 3028

sshd
pid = 3610

tcsh
pid = 4005

bash
pid = 8416

vim
pid = 9204

Now, read its section | manual page
and experiment with ps. Read the
output carefully and pay attention at
the columns to understand the
wealth of information that comes

back to you.

Process Control Block (PCB)

OS bookkeeping information associated
with each process:

* Process state,

* Program counter,

* CPU registers,

* CPU scheduling information,

* Memory-management information,
* Accounting information,

 |/O status information,

process id

process state

program counter

registers

memory limits

list of open files

Process State

As a process executes, it changes state:

— new: The process is being created.
— running: Instructions are being executed.

— waiting: The process is waiting for some event to
occur.

— ready: The process is waiting to be assigned to a
processor.

— terminated: The process has finished execution.

Process State Transition Diagram

admitted

scheduler dispatch

. terminated

: running
interrupt

I/O or event wait

I/O or event completion @

Process Scheduling Queues

* Job queue — set of all processes in the system.

* Ready queue — set of all processes residing in main
memory, ready and waiting to execute.

* Device queues — set of processes waiting for an
/O device.

Processes migrate between the various queues.

ready
queue

wait
queue

Processes and OS Queues

queue header PCB , PCB ,
head »
tail \ registers reqgisters
PCB; PCB,, PCB,
/ |
head 4

Process Scheduling

i

ready queue

@)

child
terminates

interrupt
occurs

TIK:

I/0 wait queue |/0 request <
time slice 2
expired
child :
termination [«——— create child <
wait queue pIRces
in’Ferrupt V\{ait for an
wait queue Interrupt

Schedulers

* Long-term scheduler (or job scheduler) —
selects which processes should be brought
into the ready queue

* Short-term scheduler (or CPU scheduler)
— selects which process should be executed
next and allocates CPU

Schedulers

 Long-term scheduler is invoked very infrequently
(seconds, minutes) = (may be slow; controls the degree of

multibrogramming)

* Short-term scheduler is invoked very frequently
(milliseconds) = (must be fast)

Processes can be described as either:

— 1/0O-=bound process — spends more time doing I/O than
computations, many short CPU bursts

— CPU-bound process — spends more time doing
computations; few very long CPU bursts

Context Switch

* When CPU switches to another process, the system
must save the state of the old process and load the
saved state for the new process.

* Context-switch time is overhead; the system does
no useful work while switching.

* Time dependent on hardware support.

CPU Switch

process P, operating system

interrupt or system call

Ing

process P,

executing / l

B save state into PCB,

reload state from PCB,

/

-idle interrupt or system call

!

—

save state into PCB;

) reload state from PCB,

- idle

executing

> idle

Process Creation

Parent process creates children processes, which, in turn can
create other processes, forming a tree of processes.

Resource sharing:
— Parent and children share all resources,
— Children share subset of parent’s resources,

— Parent and child share no resources.

Execution:
— Parent and children execute concurrently,

— Parent may wait until children terminate.

Process Creation (Cont.)

* Address space:
— Child has duplicate of parent’s address space, or

— Child can have a program loaded onto it.

* UNIX examples:

— fork system call creates new process and returns with a
pid (0 in child, > 0 in the parent),

— exec system call can be used after a fork to replace the
process’ memory space with a new program.

Process Termination

Process executes last statement and asks the operating
system to terminate it (exit)
— Output data from child to parent (via wait)

— Process’ resources are deallocated by operating system

Parent may terminate execution of children processes
(abort) if:

— Child has exceeded allocated resources,

— Task assigned to child is no longer required,

— If parent is exiting (some operating system do not allow child to
continue if its parent terminates)

— All children terminated - cascading termination

Cooperating Processes

* An independent process cannot affect or be
affected by the execution of another process.

* A cooperating process can affect or be
affected by the execution of another process.

* Advantages of process cooperation:
— Information sharing,
— Computation speed-up,
— Modularity,

— Convenience.

Interprocess Communication (pc)

Mechanism for processes to communicate and to synchronize
their actions

Message system — processes communicate with each other
without resorting to shared variables

IPC facility provides two operations:
— send(message), receive(message)
— where message has fixed or variable size
If processes P and Q wish to communicate, they need to:
— establish a communication link between them
— exchange messages via send/receive
Implementation of communication link
— physical (e.g., shared memory, hardware bus)
— logical (e.g., logical properties)

IPC Design Dimensions
(or properties)

- Naming

- direct or indirect

- symmetric or asymmetric

- Synchonization

- blocking send, non-blocking send

- blocking receive, non-blocking receive
- Buffering

* Zero capacity

- bounded capacity

- unbounded capacity

Indirect Communication

* Messages are directed and received from mailboxes (also
referred to as ports)

— Each mailbox has a unique id

— Processes can communicate only if they share a mailbox

* Properties of communication link
— Link established only if processes share a common mailbox
— A link may be associated with many processes
— Each pair of processes may share several communication links

— Link may be unidirectional or bi-directional

send(B, m) H receive(B, m)
> >

mailbox
process process

Indirect Communication

* Operations:
— create a new mailbox,
— send and receive messages through mailbox,

— destroy a mailbox.

* Primitives are defined as:
send(A, message) — send a message to mailbox A,

receive(A, message) — receive a message from
mailbox A.

Indirect Communication

* Mailbox sharing e\
— P, sends one message m ﬂ_>®

— P, and P, try to receive

— Who gets the message! G

 Solutions

— Allow a link to be associated with at most two processes.

— Allow only one process at a time to execute a receive
operation.

— Allow the system to select arbitrarily the receiver. Sender is
notified who the receiver was.

Direct Communication

Processes must name each other explicitly:
send (P, message) — send a message to process P

receive(Q, message) — receive a message from process Q

send(P2, m)

process process

Direct Communication

Processes must name each other explicitly:
send (P, message) — send a message to process P

receive(Q, message) — receive a message from process Q

receive(P, m)
>

process process

Direct Communication

* Properties of communication links

— Links may be established automatically or may have to
be created explicitly

— Links may be point-to-point or point-to-multipoint

— Links may be unidirectional or bidirectional

0@

Direct Communication

* Properties of communication links

— Links may be established automatically or may have to be created
explicitly
— Links may be point-to-point or point-to-multipoint

— Links may be unidirectional or bidirectional

. .

. .
. .
. .
. .
. .
.
. \,
’
; \
. \
; \
; \
; \
; \
: \
; \
; \
\
'
'
:
'
'
.
:
:
\
\
\
\
\
\

/

@ 0 0
~__ :
@

'
'
1
'
'
'
'
1
'
'
'
'
\ '
\ 1
\ '
. .
.
.\ R
. .
0 ’
N .
. .
. S
* B

Direct Communication

* Properties of communication links

— Links may be established automatically or may have to be created
explicitly

— Links may be point-to-point or point-to-multipoint
— Links may be unidirectional or bidirectional

>
—

Synchronization

* Message passing may be either blocking or non-blocking.

* Blocking is considered synchronous:
— Blocking send has the sender block until the message is received.

— Blocking receive has the receiver block until a message is
available.

* Non-blocking is considered asynchronous
— Non-blocking send has the sender send the message and continue.

— Non-blocking receive has the receiver receive a valid message or
null.

Buffering

Queue of messages attached to the link;
implemented in one of three ways:

. Zero capacity — 0 messages
Sender must wait for receiver (rendezvous).

2. Bounded capacity — finite length of n messages.
Sender must wait if link full.

3. Unbounded capacity — infinite length. Sender
never waits.

Unix pipe(2)

- Point to point

- Unidirectional

- For processes related by birth (same machine)

- Reliable delivery

- Stream of bytes

- FIFO

- Virtually identical to reading and writing to a file

(low level file I1/O)

Unix pipe(2)

A process PO is born

open
files

stdin

stdout

stderr

Before creating a child with whom it will
communicate, it creates a pipe (system call).

Unix pipe(2)

open
files

, 2c int arra
stdin P 4

stdout

stderr

Unix pipe(2)

open
files

, 2c int arra
stdin P 4

stdout

stderr

Then... it creates child Pl with fork

Unix pipe(2)

p2c int array p2c int array

Pl’s local copy
with values
inherited from PO

Unix pipe(2)

PO closes the input end of Pl closes the output end
the pipe (index 0) of the pipe (index)

Unix pipe(2)

m
y
» — - | | N |
m P)
4 | y
pr — | | | 4 '

PO closes the input end of Pl closes the output end
the pipe (index 0) of the pipe (index)

Unix pipe(2)

[) [Y ~
L - L 4
-’ - | = dem N\ | NS

-~ [. - 1
Y o »m
L 4 | A
e " | | r |

PO writes to file Pl reads from file
descriptor p2c[l] descriptor p2c[0]

write(2) read(2)

IPC Mechanisms

File -)
Pipe - What are the

. properties of each?
Named pipe What are the
Shared memory advantages and

: disadvantages of

Message passing each?
Mailbox - How do you select
Remote procedure calls 2O U

Sockets (TCP datagram)

IPC Mechanisms

File /)
Pipe - What are the

. properties of each?
Named pipe - What are the
Shared memory advantages and

: disadvantages of

Message passing each?
Mailbox - How do you select
Remote procedure calls 2O U

Sockets (TCP datagram)

IPC Mechanisms

File -)
Pipe - What are the

. properties of each?
Named pipe - What are the
Shared memory advantages and

: disadvantages of

Message passing each?
Mailbox - How do you select
Remote procedure calls 2O U

Sockets (TCP datagram)

Names, who needs names!

Remember that the main constraint for the use
of pipe (2)is that the communicating
processes must be in the same computer and
related by birth?

You cannot you use pipes for processes not
related by birth because they won’t have access

to the same memory space.

71

Names, who needs names!

There is a different kind of pipe you can use for
processes unrelated by birth in the same

computer: named pipe.

unnamed pipe

int £d[2];
int r = pipe(p);

named pipe (aka. FIFO)

char *fifo = “/tmp/fifo";

mkfifo(fifo, 00666);

int fd = open(fifo,
O WRONLY) ;

or O RDONLY

72

Names, who needs names!

Remember that the main constraint for the use
of sem (2) is that the communicating processes

must be in the same computer and related by
birth?

You cannot you use pipes for processes not
related by birth because they won’t have access

to the same memory space.

73

Names, who needs names!

There is a different kind of pipe you can use for
processes unrelated by birth in the same

computer: named pipe.

unnamed pipe

int £d[2];
int r = pipe(p);

named pipe (aka. FIFO)

char *fifo = “/tmp/fifo";

mkfifo(fifo, 00666);

int fd = open(fifo,
O WRONLY) ;

or O RDONLY

74

