
Introduction
CSCI 315 Operating Systems Design

Department of Computer Science

What is an Operating System?

A "program" that acts as an intermediary between a
user of a computer and the computer hardware.

What is an Operating System?

• The OS manages resources in the computer
system.

• The OS controls the execution of programs.

Operating System Definitions

• Resource allocator – manages and allocates
resources.

• Control program – controls the execution of
user programs and operations of I/O devices.

• Kernel – the one program “running” at all times
(all else being application programs).

A Modern Computer System

CPU
Disk

Controller
I/O Controller

...

Disks Mouse

Keyboard

Printer

Memory Graphics
Adapter

Network
Interface

Display

Computer System Components

1. Hardware – provides basic computing resources (CPU,
memory, I/O devices).

2. Operating system – controls and coordinates the use of the
hardware among the various application programs for the
various users.

3. Applications programs – define the ways in which the system
resources are used to solve the computing problems of the
users (compilers, database systems, video games, business
programs).

4. Users (people, machines, other computers).

Abstract View of System Components

Macroscopic Abstract View of the
Computer System

Hardware

Operating System

Application Programs

Why talk about Design?

Evolution

Not all systems are the same
• single user, single program
• single user, multiprogrammed
• multiple user, multiprogrammed• general purpose

• mobile system
• embedded system
• real time
• mainframe
• server
• cluster (HPC)
• distributed
• parallel

user, programming

hardware system

Consider the needs

• What is the goal of the system?
• What is the hardware for this system?
• What resources are available?
• How many users?
• Do programs needs to run “simultaneously” ?
• What are the most essential functions that all users

or programs will need in the system?

The needs define what the OS  
will do for the system

Mainframe Systems

• Reduce setup time by batching similar jobs.
• Automatic job sequencing – automatically transfers

control from one job to another. First rudimentary
operating system.
• Resident monitor:
– initial control in monitor,
–control transfers to job,
–when job completes control transfers pack to monitor.

Memory Layout for a  
Simple Batch System

Operating System

User Program Area

One program at a time
is loaded, runs to

completion, and leaves
the system.

Multiprogrammed Batch Systems

Several jobs are kept in main
memory at the same time, and
the CPU is multiplexed among

them.

Operating System

Job 1

Job 2

Job 3

Job 4

0

512K

OS Features Needed for
Multiprogramming

• I/O routines supplied by the system.
• Memory management – allocate memory to each

of several jobs.
• CPU scheduling – determine which job runs

when.
• Control access to multiple devices.

Time-Sharing Systems 
Interactive Computing

• The CPU is multiplexed among several jobs that are kept
in memory and on disk (the CPU is allocated to a job only
if the job is in memory).

• A job swapped in and out of memory to the disk.
• On-line communication between the user and the system

is provided:
– When the operating system finishes the execution of one

command, it seeks the next “control statement” from the user’s
keyboard

• On-line system must be available for users to access data
and code.

Desktop Systems

• Personal computers – computer system dedicated to a single
user.

• I/O devices – keyboards, mice, display screens, small printers.

• User convenience and responsiveness.
• Can adopt technology developed for larger operating system:
– Often individuals have sole use of computer and do not need advanced

CPU utilization of protection features.

• May run several different types of operating systems
(Windows, MacOS, UNIX, Linux).

Parallel Systems

• Systems with more than one CPU in close communication
(also known as multiprocessor systems).

• Tightly coupled system – processors share memory and a clock;
communication usually takes place through the shared memory.

• Advantages of parallel system:
– Increased throughput

– Economical

– Increased reliability (in some cases)
• graceful degradation

• fail-soft systems

Parallel Systems (Cont.)
• Asymmetric multiprocessing
– Each processor is assigned a specific task; master processor

schedules and allocated work to slave processors.

– More common in extremely large systems.

• Symmetric multiprocessing (SMP)
– Each processor runs an identical copy of the operating system.

– Many processes can run at once without performance
deterioration.

– Most modern operating systems support SMP.

Symmetric Multiprocessing Architecture

CPU

Memory

CPU CPU...

Distributed Systems

• Distribute the computation among several physical
processors.

• Loosely coupled system – each processor has its own local
memory; processors communicate with one another
through various communications lines, such as high-speed
buses or telephone lines.

• Advantages of distributed systems:
– Resources Sharing,

– Computation speed up – load sharing,

– Reliability,
– Communications.

Distributed Systems (cont.)

• Requires networking infrastructure.

• Local area networks (LAN) or Wide area
networks (WAN).

• May be either client-server or peer-to-peer
systems.

General Structure of  
Client-Server System

Client

Server

Client Client...

network

Clustered Systems

• Clustering allows two or more systems to share
storage.
• Provides high reliability.
• Asymmetric clustering: one server runs the

application or applications while other servers
standby.
• Symmetric clustering: all N hosts are running the

application or applications.

Real-Time Systems

• Often used as a control device in a dedicated
application such as controlling scientific experiments,
medical imaging systems, industrial control systems,
and some display systems.
• Well-defined fixed-time constraints.
• Real-Time systems may be either hard or soft real-

time.

Real-Time Systems (Cont.)
• Hard real-time:
–Secondary storage limited or absent, data stored in short

term memory, or read-only memory (ROM).
–Conflicts with time-sharing systems, not supported by

general-purpose operating systems.

• Soft real-time:
–Limited utility in industrial control of robotics.
–Can be integrated with time-shared systems.
–Useful in applications (multimedia, virtual reality) requiring

tight response times.

Embedded Systems

• Appliances.
• Smart sensors.
• Digital control systems.
• Issues:
–Limited memory,
–Slower processors,
–Small display screens (if any).

Operating System Operations

• I/O devices and the CPU can execute concurrently.

• Each device controller is in charge of a particular device type.

• Each device controller has a local buffer.

• There must be some mechanism to move data from/to main
memory to/from local buffers.

• I/O operations move data from the device to a controller’s local
buffer.

• There must be some mechanism for the CPU to learn that an I/O
operation has completed.

Assumptions:

I/O and the OS

• Data comes in from input devices and goes out to output devices.

• Two big questions: (1) “Should application programmers work
directly with I/O devices?” (2) “Is there any advantage in having the
OS serve as intermediary to between applications programs and I/O
devices?”

• Another BIG question: “how does the CPU interact with I/O
devices to make data transfers happen?”

• Ask yourself if and when it’s productive to have the CPU involved
in data transfers.

• Ask yourself how the CPU may be told when a data transfer
between I/O device and memory terminates.

Nothing happens without I/O:

Option 1: Polling

https://www.youtube.com/watch?v=18AzodTPG5UThe Simpsons:

ask device if data is ready end I/O

data is not ready

wait some time

initiate I/O

data is ready

Option 2: Interrupt

initiate I/O

go do something
productiveinterrupt

data is ready
(the rest of this code

has to wait)

Option 2: Interrupt

initiate I/O

go do something
productive

receive data

interrupt
data is ready

Option 2: Interrupt

initiate I/O

go do something
productiveinterrupt

receive data
(interrupt handler)

go back to
something
productive

I/O terminated

context switch

context switch

data is ready

Interrupt Vector

Interrupt
ID

Address of the corresponding handler in memory
(think of a C function pointer)

0 address of handler to int 0

1 address of handler to int 1

2 address of handler to int 2

… address of handler to int …

Each device is assigned an interrupt number or ID

Interrupt Driven I/O Cycle

Data Transfer from I/O to RAM

Hardware Support for the OS
• Two classes of instructions: one class for anyone to use,

others with privileged use (for the OS kernel).

• Need to be able to switch between user mode and kernel
mode.

• If a user runs a privileged instruction, an exception is raised.

• To switch to kernel mode, you need to trap to the kernel.

Booting up the OS

Source: http://duartes.org/gustavo/blog/post/how-computers-boot-up/

• BIOS is firmware (flash memory). Power on self tests (POST) check if machine is
in shape to run.

• Every disk has an MBR, which contains a bootstrap program and a partition table.
Each partition has a boot sector with the boot loader.

• How does the machine know the address of the first instruction to run???

